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Abstract. We investigate the Hamiltonian structures of some hierarchy of evolution equations
related to a polynomial bundle over the algebrasl(4). The bundle contains the polynomial Lax
pair for the O(3) chiral fields system and for that reason the corresponding hierarchy of nonlinear
evolution equations is called the CF hierarchy. It is known that the Hamiltonian properties of
the CF hierarchy may be explained as a consequence of the existence of compatible Poisson
structures arising from a different Lie algebra structure defined overso(4). We show that the
generating operator for the CF hierarchy can be regarded as a Nijenhuis tensor on the manifold
of potentials and then naturally this manifold is equipped with the Poisson–Nijenhuis structure.

1. Introduction

It is known that the discovery of the inverse scattering method, (see for example the
monograph book [6]), permitted us to apply a number of classical results from the spectral
theory of the operators to the problem of obtaining exact solutions for some special class of
evolution equations depending on one spatial variablex, now called soliton equations. In the
past decades the evolution of the original ideas gave rise to a number of various approaches
to the investigation of the soliton equations and the remarkable properties of these equations
attracted general interest. Nowadays we have a number of approaches treating not only the
questions of how to find exact solutions of the soliton equations but also the algebraical and
geometrical theory for the Hamiltonian structures of the soliton equations, the existence of
infinite series of conservation laws and other related topics which are difficult even to list.
However, there is one property that is characteristic of the soliton equations and although
it is interpreted in different ways in different theories it plays a crucial role in all of the
approaches—the soliton equations can be written as the compatibility condition between
two linear operatorsL andM:

[L,M] = 0. (1)

(This representation is called Lax representation and the coupleL,M-Lax pair.) Usually
the operatorsL andM have the form

L ≡ ∂

∂x
− U(x, t, λ) M ≡ ∂

∂t
− V (x, t, λ) (2)

whereU,V are some matrix-valued functions, depending on the timet and the spatial
variablex through a set of ‘potential’ or ‘field’ functions

(f1(x, t), f2(x, t), . . . , fn(x, t)) ≡ f
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and on the spectral parameterλ. The soliton equation (or system of equations) corresponding
to the pairL,M is written in terms of the potential functions and has the form

(fi)t = Fi(f, fx, . . .) i = 1, 2, . . . , n.

The question about the criteria for the existence of a Lax pair for a given evolution equation
(or a system of equations) and the construction of such pairs is very interesting and important.
There are some results in this direction, but the problem is far from its final solution.
Meanwhile, examples of quite different Lax pairs (not differing only on the representation
of the finite-dimensional algebras to which the coefficientsU(x, t, λ), V (x, t, λ) belong) for
the same equation are found. For example, in a recent work [1] we introduced new Lax
pairs, polynomial in the spectral parameter, for two important physical systems—the system
of O(3) chiral fields (CF) equations and the famous Landau–Lifshitz (LL) equation [18]. The
pairs that were known before depend on the spectral parameterλ through elliptic functions
[3, 4, 33]. Thus, there arises a number of interesting questions about the equivalence of
the Lax pairs or in other words whether using different Lax pairs one can obtain the same
results. It seems that the problem can be divided into two other problems.
• The equivalence of the hierarchies of evolution equations, the hierarchies of their

conservation laws, and the geometrical properties of the corresponding hierarchies.
• The equivalence of the methods for constructing the exact solutions.
In the most trivial case, when the different Lax pairs correspond to different faithful

representations of the same algebra, the first of these problems is trivially answered.
However, even in this case the second problem is not so simple, as it can be shown that the
spectral properties of the corresponding operators actuallydependupon the representation
one works in, see for example [15]. However, in our opinion far more interesting is the
case where the Lax pairs differ not only by the choice of the corresponding representations
but when the dependence on the spectral parameter in the Lax pairs is different. Of course,
in order to answer the questions about the equivalence one must investigate thoroughly the
results obtained via different Lax pairs. The elliptic pairs for the LL equation and the O(3)
CF equation have attracted general attention and the literature treating the corresponding
equations is large enough. Using the elliptic pair it was shown that the LL equation
and the system of O(3) CF equations are completely integrable Hamiltonian systems, see
[33, 27], and the hierarchies of equations related to the LL and CF equations as well as
their Hamiltonian structures are investigated in [7, 8, 10, 32].

There is one additional trend which was initially one of our principal motivations for
the search of polynomial Lax pairs for the LL and CF equations. It is well known that
when some parameters tend to zero the LL equation transforms into the famous Heisenberg
ferromagnet (HF) equation. The auxiliary linear problem for the HF equation is polynomial
in λ and one of the well known facts from the theory of the soliton equations is the gauge
equivalence between this problem and the Zakharov–Shabat linear problem. From here
follows the equivalence between HF and the nonlinear Schrödinger equation [37]. This fact
gave rise to the gauge-covariant theory of the generating (recursion) operators [13–15] and
it is possible that the new pairs will help us to perform a similar program in the case of LL
and CF equations.

As already mentioned, the polynomial pairs for the LL and CF equations have recently
been introduced and the theory for them is not so well developed as for the elliptic
pairs. In [2] we began the investigation of the LL and CF hierarchies of soliton equations
corresponding to the polynomial bundle and have obtained an algorithmic procedure through
which one can calculate these hierarchies. In this work we shall investigate more closely
the Hamiltonian properties of the CF hierarchy and the corresponding recursion operators
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which in the geometric approaches are called Nijenhuis tensors.

2. The CF hierarchy of integrable equations

We must recall some facts about the hierarchies of soliton equations, which can be obtained
via thesl(4) polynomial bundle, see [2]. In order to do so let us define the following maps
from C3 into the algebraso(4) (the algebra of skew-symmetric 4× 4 matrices):

u→ {u}I =


0 u1 u2 u3

−u1 0 u3 −u2

−u2 −u3 0 u1

−u3 u2 −u1 0

 (3)

v→ {v}II =


0 v1 v2 −v3

−v1 0 v3 v2

−v2 −v3 0 −v1

v3 −v2 v1 0

 . (4)

It can be seen that every elementA ∈ so(4) can be written in the form

A = {u}I + {v}II (5)

and this representation corresponds to the well known splitting ofso(4) into direct sum of
two so(3) algebras.

Thesl(4) bundle we are speaking about consists of the following hierarchy of Lax pairs:

L ≡ ∂

∂x
− U MN ≡ ∂

∂t
− VN U(λ) = 1

2A(λ+ J ) (6)

VN(λ) = 1
2(λ

NB0+ λN−1B1+ · · · + BN)(λ+ J ) N = 0, 1, 2, . . . (7)

where

A = {u}I + {v}II
Bn = {bn}I + {cn}II

(8)

J is the diagonal matrix

J =


−j1− j2+ j3 0 0 0

0 −j1+ j2− j3 0 0
0 0 j1− j2− j3 0
0 0 0 j1+ j2+ j3

 (9)

andu(x, t),v(x, t) ∈ R3 are smooth vector fields taking values on the unit sphere:

(u)2 = 1 (v)2 = 1. (10)

The vector fieldsu(x, t),v(x, t) obey the following boundary conditions

lim
x→±∞u = u0 = constant

lim
x→±∞v = v0 = constant

lim
x→±∞

(
∂

∂x

)n
u = 0

lim
x→±∞

(
∂

∂x

)n
v = 0

n = 1, 2, . . .

(11)
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which mean that they converge fast enough to some limit values for|x| → ∞. Let us
denote the set of the matrices of the type (8) withu(x),v(x) obeying (10), (11) byM. In
other wordsM is the set of potentials.

In [2] we proved that the nonlinear evolution equations, corresponding to the hierarchy
of Lax pairs introduced above have the following matrix form:

At = (BN)x − 1
2(AJBN − BNJA) (12)

and can be written in an equivalent ‘vector’ form

ut = −u× bN+1

vt = −v × cN+1

N = 0, 1, 2, . . .

(13)

where the functionsbn, cn, n = 0, 1, . . . are the solutions of the infinite system:

u× b0 = 0 v × c0 = 0

u× bn+1 = −(bn)x −K(v × cn)+ u×K(cn)− bn ×K(v)
v × cn+1 = −(cn)x −K(u× bn)+K(u)× cn −K(bn)× v
n = 0, 1, . . . , N − 1.

(14)

We call this system the CF chain system. In the above expressionK is the diagonal matrix

K = diag(j1, j2, j3)

and(K(a))i ≡ jiai . The next proposition gives an algorithm for obtaining successively the
functionsbn, cn, n = 0, 1, . . . .

Proposition 2.1.The CF chain system has the following solution:

b0 = εu c0 = µv
bun+1 = u× (bun)x + 〈u, bn〉u× ux + [K(c v

n )]
u − (〈u, bn〉 − 〈v, cn〉)[K(v)]u

+u×K(v × cn v)+ 〈u,K(v)〉bun
c v
n+1 = v × (c v

n )x + 〈v, cn〉v × vx + [K(bun)]
v + (〈u, bn〉 − 〈v, cn〉)[K(u)]v

+v ×K(u× bun)+ 〈uK(v)〉c v
n

n = 0, 1, 2, . . .

(15)

whereε, µ are arbitrary constants and

〈u, bn〉 =
∫ x

±∞
(〈bun,ux〉 + 〈u×K(v), bun〉 + 〈v ×K(u), c v

n 〉) dx

〈v, cn〉 =
∫ x

±∞
(〈c u

n ,vx〉 + 〈u×K(v), bun〉 + 〈v ×K(u), c v
n 〉) dx.

(16)

In the above formulae we denote by〈, 〉 the usualR3 scalar product:

〈a, b〉 = a1b1+ a2b2+ a3b3 (17)

and by the upper indices ‘u’ and ‘v’ are denoted the projections of the corresponding vector
fields onto the planes orthogonal to the vector fieldsu andv respectively. (Of course, as
u andv depend onx these planes also depend onx.)

Let us remark that the above expressions entail the existence of the integro-differential
operatorsA±, such that(

bun+1
c v
n+1

)
= A±

(
bun
c v
n

)
. (18)
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The expressions for these operators are as follows

A±

(
a
b

)
=
(
u× (a)x + u× ux

∫ x
±∞(〈a,ux〉 + 〈u×K(v),a〉 + 〈v ×K(u), b〉) dx

v × (b)x + v × vx
∫ x
±∞(〈b,vx〉 + 〈u×K(v),a〉 + 〈v ×K(u), b〉) dx

)
+
(

[K(b)]u − [K(v)]u
∫ x
±∞(〈a,ux〉 − 〈b,vx〉) dx

[K(a)]v + [K(u)]v
∫ x
±∞(〈a,ux〉 − 〈b,vx〉) dx

)
+
(
u×K(v × b)+ 〈u,K(v)〉a
v ×K(u× a)+ 〈u,K(v)〉b

)
wherea, b are two vector fields, such that〈a,u〉 = 〈b,v〉 = 0. We shall see that the
operators (18) called recursion operators play a crucial role in the geometrical approach to
the theory of the nonlinear evolution equations contained in the CF hierarchy.

3. Two-parametric family of Lie brackets over so(4) and related structures

We intend to show that the Hamiltonian properties of the CF hierarchy of equations are
due to the special geometric structures existing over the manifold of potentials. For this we
need some preliminaries which we introduce in the next section.

3.1. Two-parametric family of Lie brackets overso(n)

Let so(n) (n > 2) be the Lie algebra of skew-symmetricn× n matrices (the considerations
below are the same for bothR andC so we do not fix the field of numbers). LetJ be fixed
symmetric matrixJ ∈ sl(n). We can then define the following bilinear skew-symmetric
map

C : so(n)× so(n)→ so(n)

C(X, Y ) = XJY − YJX. (19)

Clearly, if we fix the first argument inC(X, Y ) we obtain a linear map:

CX : so(n)→ so(n)

CX(Y ) ≡ C(X, Y ).
(20)

Of course the mapX → CX is also linear and mapsso(n) into Hom(so(n), so(n)). One
can check by a simple computation that the following proposition holds.

Proposition 3.1.For arbitraryX, Y ∈ so(n)
[CX,CY ] = CC(X,Y ). (21)

Corollary 3.1. The vector spaceso(n) can be endowed not only with the usual Lie algebra
structure defined by the commutator but with an additional Lie algebra structure defined by
C(X, Y ).

Proof. Indeed,C(X, Y ) is bilinear and skew-symmetric and the Jacobi identity is equivalent
to (21). �

The mapC(X, Y ) possesses other interesting properties, which we introduce below.

Proposition 3.2.C(X, Y ) is two-coboundary for the adjoint representation ofso(n).
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Proof. Let us consider the linear mapα:

α : so(n)→ so(n)

α(X) = 1
2(JX +XJ)

(22)

whereX ∈ so(n) and J is the same diagonal matrix that we used in the definition of
C(X, Y ). Then it is readily seen that dα(X, Y ) = C(X, Y ). As d2 = 0, for arbitrary
X, Y,Z ∈ so(n) we have dC(X, Y,Z) = 0. �

From the above proposition one readily obtains the following.

Corollary 3.2. For arbitraryX, Y ∈ so(n)
[adX,CY ] + [CX, adY ] − C[X,Y ] − adC(X,Y ) = 0. (23)

We would like to also note the following property of the mapα in the case when our
algebra isso(4) and the elementJ is the same as in (9).

Proposition 3.3.The mapα corresponding toJ , defined in (9), interchanges the twoso(3)
subalgebras ofso(4). More precisely:

α({u}I ) = −{Ku}II α({u}II ) = −{Ku}I (24)

whereK = diag(j1, j2, j3).

The following theorem can be proved by a simple computation.

Theorem 3.1.Let C(X, Y ) be a map for which (23) holds. Then for arbitrary numbersa, b

the bilinear map

H(a,b) : G × G → G
H(a,b)(X, Y ) = a[X, Y ] + bC(X, Y ) (25)

defines a Lie algebra structure overso(n).

Remark 3.1.WhenC(X, Y ) is defined byJ , as in (19), the proof of the above statement
can be simplified as the bilinear mapH(X, Y ) is constructed in the same way as the map
C(X, Y ), but using instead ofJ the matrixaJ + b1n.

If so(n) is endowed with the structure defined by the new commutatorH(a,b)(X, Y ) related
to the fixed symmetric matrixJ we shall denote it byso(n)(a,b). We shall denote byH(a,b)

X

the linear map that corresponds toH(a,b)(X, Y ) when we fix the first argument.

3.2. Invariant bilinear forms forso(4)(a,b)

We shall now concentrate on the algebraso(4). The algebraso(4) is semisimple but not a
simple one, (so(4) = so(3) ⊕ so(3), see (5)). For a given Lie algebraG let us introduce
the Killing form B(X, Y ):

B(X, Y ) = tr(adX ◦ adY ) X, Y ∈ G. (26)

B(X, Y ) is symmetric and as it is well known it is invariant with respect to the adjoint
action, that is:

B(adX(Y ), Z)+ B(Y, adX(Z)) = 0 X, Y,Z ∈ G. (27)

An algebraG (overR or C) is semisimple if the Killing formB(X, Y ) is nondegenerate. If
the algebraG is simple every invariant symmetric bilinear form is proportional toB(X, Y )
[16]. On the other hand, ifG is a matrix algebra with respect to the usual commutator, then
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the form tr(XY) is symmetric and invariant. It follows that if the trace form is nondegenerate
and the algebra is simple then the formB(X, Y ) is proportional to tr(XY). It turns out that
in the caseG = so(4) the Killing form B(X, Y ) is again proportional to tr(XY) despite
the fact thatso(4) is semisimple but not a simple one and we shall use this fact in the
calculations as the trace form is simpler. For our considerations it is also important that
whenG is semisimple but not simple there are other invariant bilinear forms which are not
proportional to the Killing form. ForG = so(4) we shall introduce such a form. In order
to do so let us define the linear mapT : so(4)→ so(4)

(T (X))ij = 1
2εijksXks i, j, k, s = 1, 2, 3, 4. (28)

In the above expressionεijks is the alternating Levi–Civita symbol, that isεijks is equal to
zero if at least two of its indices coincide and if(i, j, k, s) is a permutation of(1, 2, 3, 4)
thenεijks is equal to the parity of the permutation(i, j, k, s). We also note that in (28) the
usual rule about the summation over repeated indices is assumed. The next proposition can
be proved by direct calculation.

Proposition 3.4.Let α(X) be the mapα(X) = 1
2(JX + XJ ) with J defined in (9) andT

be the map defined in (28). Then:
(1) T is involutive:

T 2 = idso(4).

(2) T is symmetric with respect to the Killing form:

B(T (X), Y ) = B(T (Y ),X) X, Y ∈ so(4).
(3) [T (X), T (Y )] = [X, Y ] X, Y ∈ so(4).
(4) The twoso(3) subalgebras ofso(4) are invariant under the action ofT :

T ({u}I ) = {u}I
T ({u}II ) = −{u}II .

(5) The formB([X, Y ], T (Z)) is three-cocycle for the trivial representation ofso(4).
(6) The formB(XJY − YJX, T (Z)) = B(C(X, Y ), T (Z)) is three-cocycle for the

trivial representation ofso(4).
(7) The linear mappingα is symmetric with respect to the Killing form:

B(α(X), Y ) = B(X, α(Y )) X, Y ∈ so(4).
(8) T ◦ α = −α ◦ T .

Let us define the bilinear form

K(X, Y ) ≡ B(X, T (Y )) X, Y ∈ so(4). (29)

Taking into account the properties ofT it is not hard to prove the following.

Proposition 3.5.K(X, Y ) is invariant bilinear form with respect to the adjoint action of
so(4)(a,b).

From the properties ofT andα listed in proposition 3.4 we get the following.

Proposition 3.6.The linear mappingα is skew-symmetric with respect to the formK, that
is

K(α(X), Y )+K(X, α(Y )) = 0 X, Y ∈ so(4). (30)
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3.3. Two-parametric family of Poisson–Lie tensors overso(4)

As is well known (see for example [25]) the Poisson brackets over a manifold† M can be
introduced either by symplectic form or by Poisson tensor. Let us recall some principal
results from the theory of Poisson manifolds, that is the manifolds equipped with Poisson
tensor.

Let Tm(M) andT ∗m(M) be the tangent and the cotangent spaces at the pointm of the
manifoldM.

The Poisson tensor field (or simply Poisson tensor) is a field of linear mappings
m→ Pm : T ∗m(M)→ Tm(M) having the properties:

(i) P ∗m = −Pm (ii) [P, P ]S = 0.

Here [. ]S denotes the so-called Schouten bracket of two tensor fields (see [9]).
The Poisson tensors were discovered by Lie [20] and have many applications, see for

example [19, 25]. Condition (ii) ensures the Jacobi identity and (i) guarantees the skew-
symmetry of the Poisson bracket

{f, g} = (Pdf, dg)

wheref andg are functions over the manifoldM.

Remark 3.2.When we writeP ∗ = −P we assume that the spacesT ∗∗m (M) andTm(M) can
be identified. This of course is always possible if the manifoldM is finite dimensional,
but if it is not the case one must proceed with some caution.

The Poisson bracket could be degenerate, that isP does not necessarily possess an
inverse. WhenP is invertible one can define the symplectic formω through the formula
ω(X, Y ) = (X, P−1(Y )), whereX, Y are vector fields overM. Naturally, in this case the
Poisson brackets defined through the Poisson structure and through symplectic structureω

coincide.
There is a canonical way to equip the dual spaceG∗ of a Lie algebraG with Poisson

structure, provided one can identify the vector spacesG∗∗ andG. This structure is again
discovered by Lie, [20] and was rediscovered later by several authors, see for example
[17, 34].

Supposeµ ∈ G∗. Then clearly

Tµ(G∗) = G∗ T ∗µ(G∗) = G∗∗ = G. (31)

The canonical Poisson structure overG∗ is defined by the following field of linear maps:

µ→ Lµ ∈ Hom(G,G∗)
Lµ(ξ) = −ad∗ξ µ ξ ∈ G. (32)

The tensorL is called Poisson–Lie tensor or Kirillov tensor and the Poisson bracket defined
by it is called Poisson–Lie bracket, Kirillov bracket, Berezin bracket etc. We shall call the
above tensor the Poisson–Lie tensor and the corresponding bracket the Poisson–Lie bracket.

If there exists symmetric nondegenerate bilinearB(X, Y ) overG,invariant with respect
to the adjoint action ofG, then one can not only identify in canonical wayG∗ andG but
define Poisson brackets onG. Indeed, ifG∗ andG are identified the adjoint and the coadjoint
representations coincide and one can define Poisson structure over the algebraG:

q → Lq ∈ Hom(G,G)
Lq(ξ) = adξ q ξ ∈ G ≡ G∗. (33)

† In what follows we assume that all the manifolds and all the tensor fields are smooth.
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If f, g are smooth functions overG the Poisson bracket{f, g} of these functions is then

{f, g}(q) = −〈q, [dfq, dgq ]〉 = −B(q, [dfq, dgq ]) (34)

where the differentials dfq, dgq ∈ G∗ ≡ G.
Considering the algebraical structure overso(4)(a,b) and taking into account the existence

of the invariant bilinear formK(X, Y ) we arrive at the following theorem.

Theorem 3.2.For fixed elementJ there exists a two-parametric family of Poisson–Lie
structures over the manifoldM = so(4):

q → P (a,b)q ∈ Hom(so(4), so(4))

P (a,b)q (ξ) = H(a,b)
ξ (q) = −H(a,b)

q (ξ) ξ ∈ so(4) ≡ so(4)∗.
(35)

3.4. The Gel’fand–Fuchs cocycle and related Poisson structures

There is an elegant way to define the Poisson tensor over the infinite-dimensional manifold
G0[x] of all smooth functionsf (x) defined on the real line, taking their values in the Lie
algebraG and tending fast enough to constantf0 ∈ G when|x| → ∞. For obvious reasons
we take the tangent spaceTf (G0[x]) at the pointf ∈ G0[x] to be the vector space consisting
of all Schwartz-type functionsξ(x) on the line taking their values inG. We shall denote
this space byG[x]. If we define the Lie algebra operation pointwise bothG0[x] and G[x]
become Lie algebras and

[G[x],G0[x]] ⊂ G[x]. (36)

First, we recall that ifG is a Lie algebra andγ is a two-cocycle of the trivial action of the
algebra on the field of scalars, then

µ→ Pµ : Pµ(ξ) = −ad∗ξ µ+ γ (ξ, .) ξ ∈ H (37)

is Poisson tensor overG∗.
The above trick is widely applied in the theory of the integrable equations in the case

H = G[x], the algebra of Schwartz-type functions onR taking values inG, see for example
[28–31, 25]. IfK(X, Y ) is invariant nondegenerate bilinear form onG then we can define
the following two-cocycle ofG[x], called the Gel’fand–Fuchs cocycle:

γ (ξ, η) = c
∫ +∞
−∞

K(∂xξ, η(x))dx ξ, η ∈ H[x] c = constant ∂x ≡ ∂

∂x
.

(38)

Allowing some lack of rigor we identifyG[x] andG[x]∗ using the invariant nondegenerate
bilinear form onG[x]:

〈〈ξ, η〉〉 =
∫ +∞
−∞

K(ξ(x), η(x))dx ξ, η ∈ G[x] (39)

and as a result we obtain the following Poisson tensor

Pq(ξ) = [ξ, q] + c∂xξ. (40)

It can be verified that the above expression actually defines the Poisson tensor also for the
case when the potentialq belongs to the set of all smooth functions with values inG tending
fast enough to constant element fromG as |x| → ∞, that is toG0[x]. Applying the above
constructions for the caseG = so(4)(a,b) we obtain the following theorem.
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Theorem 3.3.Over the manifoldso(4)0[x] there exists a three-parametric family of Poisson
tensor fields:

P (a,b,c)q = −H(a,b)
q + c∂x. (41)

The situation stated in the above theorem is quite similar to that described in [31] but the
existence of scalar product invariant with respect to the both Lie algebra structures makes
the so(4) case quite unique.

4. Geometric setting for the CF hierarchy

4.1. Poisson–Nijenhuis structures.

In order to develop the geometric theory for the CF hierarchy we recall some properties
of the so-called Poisson–Nijenhuis (P–N ) manifolds. It is known that they give geometric
interpretations for some of the remarkable properties of the soliton equations.

Let M be a manifold. A Nijenhuis tensor fieldN overM (or simply a Nijenhuis
tensor) is a field of continuous linear mappings:

m→ Nm : Tm(M)→ Tm(M) m ∈M (42)

(field of operators) for which the Nijenhuis bracketR ≡ [N,N ] vanishes, see [9]. Roughly
speaking the fact that [N,N ] = 0 ensures that the eigenspaces ofN are integrable in
Frobenius sense. (For some additional properties of the Nijenhuis tensors see [35, 36].)

Following [23] we shall say that on the manifoldM is defined aP–N structure if on
M are defined simultaneously Poisson tensorP and Nijenhuis tensorN which satisfy the
following coupling conditions:

NP = PN∗ (43a)

PLN(X)(α)− PLX(N∗α)+ LPα(N)(X) = 0 (43b)

for an arbitrary choice ofX ∈ T (M) and α ∈ T ∗(M). (Here byT (M) and T ∗(M)

are denoted the modules of vector fields and one-forms overM andLX means the Lie
derivative defined by the vector fieldX.) The above structure seems very specific, but
for the soliton equations it is natural. In fact in almost every approach to the theory of
completely integrable systems one can notice that a crucial role is played by the so-called
compatible Poisson tensors, see [5, 6, 21, 22], or as they are also called Hamiltonian pairs,
see [11, 12]. Two Poisson tensorsP andQ are compatible if the tensorP +Q is also a
Poisson tensor. It is evident that for this it is necessary and sufficient that

[P,Q]S = 0 (44)

where [P,Q]S is the Schouten bracket. It can be shown [23], that the compatible Poisson
tensors define theP–N structure, more specifically ifP andQ are Poisson tensors on the
manifoldM andQ is invertible then the tensor fieldsN = P ◦ Q−1 andQ endow the
manifoldM with P–N structure. The properties of theP–N manifolds (or compatible
Poisson tensors) explain some of the remarkable features of the soliton equations, such
as: the fact that they appear in hierarchies, the existence of series of conservation laws
for these equations and the fact that they are Hamiltonian with respect to hierarchies of
Poisson structures (symplectic structures), see [11, 12, 21, 22]. According to the geometric
schemes the soliton equations are defined by the fundamental fields of the above structures,
for example in the case ofP–N manifolds the fundamental fieldsX satisfyLX(P ) = 0,
LX(N) = 0.
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Naturally, it happens that Poisson tensorQ is degenerate, that isQ−1 do not exist
and it is impossible to perform the construction outlined in the above. However, if it is
possible to restrict the Poisson tensorsP andQ onto some submanifoldN ⊂ M and if
the restriction ofQ is nondegenerate thenN is endowed with theP–N structure. That is
why it is important to know how to restrict Poisson tensors onto submanifolds. One of the
results treating this issue is the following theorem, [23, 24], which we shall refer to as the
restriction theorem.

Theorem 4.1.LetM be a Poisson manifold andN ⊂M be a submanifold. Let us denote
by i the natural inclusion ofN intoM, by χ∗P (N )m the subspace of covectorsα ∈ T ∗m(M)

such that

Pm(α) ∈ [di]m(Tm(N )) = im([di]m) m ∈ N (45)

and byT ⊥m (N ) the set of all covectors overM vanishing on the subspaceim([di]m), m ∈ N
(the annihilator ofim([di]m) in T ∗m(M)). Let the following relations hold:

χ∗P (N )m + T ⊥m (N ) = T ∗m(M) m ∈ N (46)

χ∗P (N )m ∩ T ⊥m (N ) ⊂ ker(Pm) m ∈ N . (47)

Then there exists a unique Poisson tensorP onN , i-connected withP , that is

Pm = [di]m ◦ Pm ◦ [di]∗m m ∈ N . (48)

The above theorem may be applied for example to restrict the Poisson–Lie tensorLµ
for a given algebraG onto the orbits of the coadjoint representation of the Lie groupG,
corresponding toG, see [17, 34] and for general results about restriction of Poisson tensors
see [26].

4.2. P–N structure of the manifold of potentials for the CF hierarchy

We shall define now the Hamiltonian structures of the equations from the CF hierarchy.
First, let us remark that the set of potentials has a natural structure of infinite-dimensional
manifold. Indeed, the manifold of potentials for the CF hierarchy is in fact the set of smooth
functions

A(x) = {u(x)}I + {v(x)}II
(u(x))2 = (v(x))2 = 1

u(x),v(x)− real

(49)

defined over the real lineR and tending fast enough to some limit value

A0 = {u0}I + {v0}II
as |x| → ∞.

Diagonalizing the matrixA(x) we see that the requirements (49) simply mean thatA(x)

takes its values into the following orbit of the adjoint representation of the groupSO(4,R):

OB0 = {A = Ad(g)B0 g ∈ SO(4,R)} ⊂ so(4) (50)

where

B0 =


0 2 0 0
−2 0 0 0
0 0 0 0
0 0 0 0

 = {(1, 0, 0)}I + {(1, 0, 0)}II . (51)
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Therefore the manifold of potentials is the setOB0[x] consisting of functions taking values in
OB0 and tending fast enough to some limit value as|x| → ∞. ClearlyOB0[x] is an infinite-
dimensional manifold and submanifold ofso(4,R)0[x]. This submanifold can be expressed
more explicitly if one remarks that the orbitOB0 has also the following representation:

OB0 = {A : B(A,A) = −16 K(A,A) = 0} ⊂ so(4,R) (52)

whereB(X, Y ) andK(X, Y ) are the symmetric forms onso(4,R) that we introduced earlier.
In order to see that it is enough to remark that for arbitrarya, b ∈ R3

B(aI , bI ) = K(aI , bI ) = −8〈a, b〉
B(aII , bII ) = −K(aII , bII ) = −8〈a, b〉
B(aI , bII ) = K(aI , bII ) = 0.

(53)

NaturallyX(x) ∈ TA(OB0[x]) exactly when

B(A,X) = 0 K(A,X) = B(A, T (X)) = B(T (A),X) = 0. (54)

For the sake of brevity we shall denote the pointsQ = {a}I + {b}II of the algebraso(4)
by Q = (a, b)T and the pointsA(x) = {u(x)}I + {v(x)}II of the manifoldOB0[x] by
A(x) = (u(x),v(x))T or simply by A = (u,v)T . Also, in order to write in a more
convenient way some complicated expressions we shall denote by lower indicesI and II
the following projections(

ξ
η

)
I

= ξ
(
ξ
η

)
II

= η. (55)

With the new notations a vectorX(x) at the pointA(x) ∈ OB0[x] is represented by a couple
of Schwartz-type functions(ξ(x),η(x))T , for which:

〈u(x), ξ(x)〉 = 〈v(x),η(x)〉 = 0. (56)

According to our convention we identify the vectors and covectors using the pairing
defined in (39). We easily obtain

〈〈(ξ(x),η(x))T , (µ(x),ν(x))T 〉〉 = −8
∫ +∞
−∞

[〈ξ(x),µ(x)〉 − 〈η(x),ν(x)〉] dx. (57)

ThusK(X, Y ) is nondegenerate when restricted to the tangent spaceTA(OB0[x]) and as
before with the help ofK(X, Y ) we can identify the tangent spaceTA(OB0[x]) and the
cotangent spaceT ∗A(OB0[x]).

We shall now try to restrict two of the tensors from the three-parametric family of
Poisson tensors defined in theorem 3.3 onto the submanifoldOB0[x]. These tensors are

QA ≡ −H(− 1
2 ,0)

A = 1
2 adA

PA ≡ −H(0, 1
2 )

A + ∂x = − 1
2CA + ∂x

(58)

or equivalently

P

(
ξ
η

)
=
(
ξx +K(v × η)− u×K(η)+ ξ ×K(v)
ηx +K(u× ξ)− v ×K(ξ)+ η ×K(v)

)
(59)

Q

(
ξ
η

)
=
(−u× ξ
−v × η

)
. (60)

Remark thatQ−1 = −Q.
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The fact thatQ allows nondegenerate restriction overOB0[x] and its form after the
restriction does not change is in fact the theorem that the Poisson–Lie tensor restricted to
an orbit of the coadjoint representation is nondegenerate, so there is no need to prove it.

In view of the tensorP it cannot be restricted directly. In order to perform the restriction
we shall use theorem 4.1 withM = so(4,R)0[x] andN = OB0[x]. Let us findχ∗P (N )A
and T ⊥A (N ), A ∈ N = OB0[x] (for the definitions of these spaces see the restriction
theorem 4.1). Naturally, the annihilator

T ⊥A (N ) = {(fu, gv)T ; f, g ∈ S} (61)

whereS is the set of all Schwartz-type functions on the line. We can also say that

T ⊥A (N ) = {(f̄ A+ ḡT (A); f̄ , ḡ ∈ S}. (62)

According to the definitionX ∈ χ∗P (N )A if PA(X) ∈ TA(OB0[x]) or in other words if the
following equations hold

B(A, ∂xX)− 1
2B(A,CA(X)) = 0 (63)

K(A, ∂xX) = 0. (64)

After some simple transformations we obtain that these equations are equivalent to

B(A,X) = ∂−1
x [B(Ax,X)+ 1

2B(A,CA(X))] (65)

K(A,X) = B(T (A),X) = ∂−1
x B(Ax, T (X)) (66)

where∂−1
x stands for the inverse of the operator∂x . The choice of∂−1

x of course is not
unique and it is easy to see that we can use as inverse any of the operators:

∂−1
x = τ

∫ x

−∞
+(1− τ)

∫ x

+∞
τ ∈ R (67)

but we shall postpone the discussion about the appropriate choice for∂−1
x in order to proceed

with our geometric construction.
Let us remark that forA ∈ OB0[x] we haveB(A, T (A)) = K(A,A) = 0 or in other

wordsA andT (A) are orthogonal with respect to the Killing form. Then taking into account
(54) we see that the following orthogonal decomposition holds:

so(4,R) = [RA(x)⊕ RT (A(x))] ⊕ TA(OB0[x]). (68)

(This decomposition obviously depends onx.)
For fixed X let us denote byXA the orthogonal projection ofX onto the space

TA(OB0[x]) and the orthogonal projection of X over the space spanned byA and T (A)
by XA. It is easily seen that

XA = X + 1
16B(A,X)A+ 1

16B(T (A),X)T (A)

XA = − 1
16B(A,X)A− 1

16B(T (A),X)T (A).
(69)

If we now return to equations (65) and (66) then due to the fact that

B(A,CA(T (A))) = K(T (A), CA(T (A))) = 0 (70)

we see that in the right-hand sides we can put instead ofX the projectionXA and (65),
(66) actually show that ifX ∈ χ∗P (N )A the componentXA is expressed by the component
XA. Taking this into account we write

X = Y + Z (71)
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where

Y = XA − 1
16A∂

−1
x [B(Ax,X

A)+ 1
2B(A,CA(X

A))] − 1
16T (A)∂

−1
x B(Ax, T (X

A)) (72)

Z = XA + 1
16A∂

−1
x [B(Ax,X

A)+ 1
2B(A,CA(X

A))] + 1
16T (A) ∂

−1
x B(Ax, T (X

A)). (73)

Using (70) one can check thatY ∈ χ∗P (N )A. In view of the vectorZ it is a linear
combination ofA andT (A) and henceZ ∈ T ⊥A (N ). Moreover, from (71) and (65), (66)
we see that

T ⊥A (N )⊕ χ∗P (N )A = T ∗A(M) (74)

T ⊥A (N )
⋂
χ∗P (N )A = {0} ⊂ ker(PA). (75)

(Of course, hereM = so(4,R)0[x] and N = OB0[x].) Then the requirements of
the restriction theorem are fulfilled and there exists restrictionP̄ of P defined overN .
According to the prescriptions of this theorem forα ∈ T ∗A(N ) we must takeβ = i∗α, then
representβ as sumβ1 + β2 in such a way thatβ1 ∈ χ∗P (N )A andβ2 ∈ T ⊥A (N ) and finally
put P̄ (α) ≡ P(β1). Here as usuali is the natural inclusion map

i : N →M. (76)

However, in our caseTA(M) andT ∗A(M) are identified and the pull-back of the inclusion
map i is simply the orthogonal projectionX → XA. As it is readily seen the role of the
componentβ1 here is played by expression (72) where we must putX instead ofXA in the
integrands. Finally, we arrive to the following expression for the restricted Poisson tensor:

P̄A(X) = ∂xX − 1
16Ax∂

−1
x [B(Ax,X)+ 1

2B(A,CA(X))]

− 1
16T (Ax)∂

−1
x B(Ax, T (X))− 1

16A[B(Ax,X)+ 1
2B(A,CA(X))]

− 1
16T (A)B(Ax, T (X))− 1

2CA(X)

X ∈ T ∗A(N ) ∼ TA(N ).

(77)

Remark 4.1.The functionAx tends to zero as|x| → ∞ andX(x) is a function of the
Schwartz type, so the integrals in (77) exist. The same is true for the integrals in the
expressions forY andZ, see (72) and (73).

We must also ensure that̄P is skew-symmetric at least in a weak sense, that is we must
have

〈〈P̄A(X), Y 〉〉 = −〈〈X, P̄A(Y )〉〉 (78)

for X, Y ∈ TA(OB0[x]). A simple integration by parts shows that for this we must take

∂−1
x = 1

2

(∫ x

−∞
+
∫ x

+∞

)
. (79)

The construction of Nijenhuis tensorN is now an easy task. We must calculate
N = P̄Q−1 = −P̄Q or N∗ = Q−1P̄ = −QP̄ . We obtain:

N∗A(X) = − 1
2[A, ∂xX] + 1

32[A,Ax ]∂−1
x [B(Ax,X)+ 1

2B(A,CA(X))]

+ 1
32[A, T (Ax)]∂

−1
x B(Ax, T (X))

+ 1
32[A, T (A)]B(Ax, T (X))+ 1

4[A,CA(X)]

X ∈ T ∗A(N ) ∼ TA(N ).

(80)

Now let us formulate our main result.

Theorem 4.2.The fields of operatorsA → QA and A → P̄A endow the manifold of
potentialsN = OB0[x] for the CF hierarchy withP–N structure.
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We shall now apply now this result to the CF hierarchy, but first we must write the
operators which we have obtained in terms ofu,v. If we put X = (ξ,η)T and assume
〈u, ξ〉 = 〈v,η〉 = 0 we get:[
P̄A

(
ξ
η

)]
I

= [∂xξ +K(v × η)+ u×K(η)+ ξ ×K(v)]u

+u×K(v) ∂−1
x [〈ux, ξ〉 − 〈vx,η〉]

+ux ∂−1
x [〈ux, ξ〉 + 〈u×K(v), ξ〉 − 〈K(u)× v,η〉] (81)[

P̄A

(
ξ
η

)]
II

= [∂xη +K(u× ξ)+ v ×K(ξ)+ η ×K(u)]v

+v ×K(u) ∂−1
x [〈vx,η〉 − 〈ux, ξ〉]

+vx ∂−1
x [〈vx,η〉 + 〈v ×K(u),η〉 − 〈K(v)× u, ξ〉] (82)

where as before by upper indicesu, v we denote the projections over the planes orthogonal
to the vectorsu andv respectively andK = diag(j1, j2, j3). For the tensor fieldN∗ we
obtain:[
N∗A

(
ξ
η

)]
I

= u× ∂xξ + u×K(v × η)− [K(η)]u + ξ〈K(v),u〉

− [K(v)]u ∂−1
x [〈ux, ξ〉 − 〈vx,η〉]

+u× ux∂−1
x [〈ux, ξ〉 + 〈u×K(v), ξ〉 − 〈K(u)× v,η〉] (83)[

N∗A

(
ξ
η

)]
II

= v × ∂xη + v ×K(u× ξ)− [K(ξ)]v + η〈K(u),v〉

−[K(u)]v∂−1
x [〈vx,η〉 − 〈ux, ξ〉]

+v × vx ∂−1
x [〈vx,η〉 + 〈v ×K(u),η〉 − 〈K(v)× u, ξ〉]. (84)

The comparison shows that the recursion operators from (18) are related toN∗ in the
following way:

N∗ = 1
2(A+ + A−). (85)

For the equations from the CF hierarchy one can equivalently useA+ andA− (the integrands
in this formulae are always total derivatives) and therefore it is evident that one can also
useN∗. Remember now that the equations from the CF hierarchy have the form (cf (12)
and (13)),

At = (Bn)x − 1
2(AJBn − BnJA) = 1

2[A,Bn+1] = QA(Bn+1) (86)

and

Bn+1 = N∗(Bn) n > 1

Bn = {bn}I + {cn}II .
(87)

If we considerBn as one-forms all of these equations are Hamiltonian. The single
thing that must be proved in order to apply the general results aboutP–N manifolds to
our case is to show that the formsB1 andB2 are closed. However, the evolution equation
corresponding toB2 is up to some changes of the parameters the O(3) CF system. It is
well known that it has a Hamiltonian function, see [33] and thereforeB2 is closed. In view
of the formB1 it is proportional to

ε{u× ux}I + µ{v × vx}II (88)
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ε, µ being constants. One readily sees that it is enough to show that on the manifoldN of
the smooth vector functionsv(x) taking values on the unit sphere and tending sufficiently
fast to some valuev0 as |x| → ∞ the covector fieldv→ γv:

γv(ξ) =
∫ +∞
−∞
〈v × vx, ξ[v]〉dx ξ[v] ∈ Tv(N ) (89)

is closed. Ifξ andη are two vector fields onN then the calculation shows that

[dγ ]v(ξ, η) =
∫ +∞
−∞

∂x〈v, ξ[v] × η[v]〉 dx − 3
∫ +∞
−∞
〈vx, ξ[v] × η[v]〉 dx.

For the vector fieldsξ and η lim|x|→0 ξ[v(x)] = lim|x|→0η[v(x)] = 0 and the first term
in the right-hand side is zero. In view of the second term it is zero simply because
vx(x), ξ[v(x)],η[v(x)] are orthogonal tov(x) and hence〈vx, ξ[v] × η[v]〉 = 0. As a
consequence from the above considerations and from the properties of the fundamental
fields of theP–N manifolds, see [21, 22], we get the following.

Theorem 4.3.The right hand sides of the equations from the CF hierarchy are fundamental
fields for theP–N structure generated by the fieldQ−1B1. These equations are Hamiltonian
with respect to the infinite hierarchy of Poisson structures and the flows corresponding to
these fields commute.

5. Discussion

As we have stated, the main question that we are trying to answer is whether using essentially
different Lax pairs we obtain the same results for the corresponding nonlinear evolution
equations. The answer for the case of the CF hierarchy of equations and more precisely
for their Hamiltonian structures and conservation laws is affirmative. We have obtained the
same Poisson tensorsP andQ over the manifold of potentials as have been obtained using
the hierarchies of Poisson structures over elliptic algebras, see [32]. Hence, we have the
same hierarchy of equations and the same conservation laws for it. However, there are still
many questions arising. The results we are citing are obtained using a slightly different
technique and in order to present them we must introduce the so-called elliptic algebras. The
elliptic algebraGe used for describing the CF hierarchy of equations and their Hamiltonian
structures is defined by the generators

X2l+1
α = ω2lωαXα

X2l+2
α = ω2lω−1

α ω1ω2ω3Xα

l ∈ Z α = 1, 2, 3.

(90)

In the above formulaeXα are the generators ofso(3) ∼ su(2) with commutation relations

[Xα,Xα] = εαβγXγ
and εαβγ is the three-dimensional Levi–Civita symbol. As a rule, in the literature the
generatorsXα are expressed through the Pauli matrices. The quantitiesω,ωα, α = 1, 2, 3
satisfy the quadratic relations

ω2
α − ω2

β = rβ − rα ω2− ω2
α = dα ≡ rα − 1

3(r1+ r2+ r3) (91)

whererα = −j2
α . Usually the following natural parametrization forω,ωα is used:

ωα =
√
P(λ)− dα ω =

√
P(λ) (92)
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whereP(λ) is the Weirstrass function:(P ′)2 = 4(P − d1)(P − d2)(P − d3). We prefer
the expressions through the Weirstrass function rather than the usual expressions with the
Jacobi elliptic functions, but of course it is all the same. One has the following commutation
relations of the generators (90) defining the so-called elliptic algebra:

[X2l
α , X

2m
β ] = εαβγ (X2(l+m)

γ − dγX2(l+m−1)
γ )

[X2l
α , X

2m+1
β ] = εαβγ (X2(l+m)+1

γ − dγX2(l+m)−1
γ )

[X2l+1
α ,X2m+1

β ] = εαβγX2(l+m+1)
γ .

(93)

These relations are consequences both from the commutation relations ofsu(2) and the
properties of the elliptic functions.

The tensorsP and Q we have used in the above arise as restrictions over some
submanifold [32], of the natural Poisson–Lie tensors for the elliptic algebraGe and its
central extension with the help of the Gel’fand–Fuchs cocycle.

Comparing the two approaches we note that all the results we have obtained in this
paper can also be formulated in terms of graded algebras. For example, in our approach
we actually use the graded algebraGp generated by the elements

Nn
α = − 1

2λ
n{eα}I (λ+ J )

Mn
α = − 1

2λ
n{eα}II (λ+ J )

n ∈ Z α = 1, 2, 3

(94)

where eα, α = 1, 2, 3 is the usual orthogonal basis inR3, that is (eα)β = δαβ . The
commutation relations between this generators are

[Nn
α ,N

m
β ] = εαβγ (Nn+m+1

γ + jγMn+m
γ )

[Mn
α,M

m
β ] = εαβγ (Mn+m+1

γ + jγNn+m
γ )

[Nn
α ,M

m
β ] = −εαβγ (jβNn+m

γ + jαMn+m
γ ).

(95)

We must stress that in writing the above relationswe used implicitly the new Lie algebra
structure that we introduced over the algebra so(4) and the above relations are not simple
consequences from the usual Lie algebra structure over so(4).

Then again the tensorsP andQ can be obtained by restricting the natural Poisson–Lie
tensors forGp and its central extension over some submanifold. One easily finds that the
resulting Poisson submanifolds used in both constructions are isomorphic and then the two
approaches based on the elliptic algebraGe and on the algebraGp are equivalent. One can
then imagine that these algebras are isomorphic but until now we had failed to prove it.
Thus, we have the ‘experimental’ result that the two algebrasGe andGp generate the same
Poisson structures over some submanifolds but it is still an open question why this occurs.
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