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Abstract. We investigate the Hamiltonian structures of some hierarchy of evolution equations
related to a polynomial bundle over the algebied). The bundle contains the polynomial Lax

pair for the O(3) chiral fields system and for that reason the corresponding hierarchy of nonlinear
evolution equations is called the CF hierarchy. It is known that the Hamiltonian properties of
the CF hierarchy may be explained as a consequence of the existence of compatible Poisson
structures arising from a different Lie algebra structure defined ewv@h. We show that the
generating operator for the CF hierarchy can be regarded as a Nijenhuis tensor on the manifold
of potentials and then naturally this manifold is equipped with the Poisson—Nijenhuis structure.

1. Introduction

It is known that the discovery of the inverse scattering method, (see for example the
monograph book [6]), permitted us to apply a number of classical results from the spectral
theory of the operators to the problem of obtaining exact solutions for some special class of
evolution equations depending on one spatial variableow called soliton equations. In the

past decades the evolution of the original ideas gave rise to a number of various approaches
to the investigation of the soliton equations and the remarkable properties of these equations
attracted general interest. Nowadays we have a number of approaches treating not only the
guestions of how to find exact solutions of the soliton equations but also the algebraical and
geometrical theory for the Hamiltonian structures of the soliton equations, the existence of
infinite series of conservation laws and other related topics which are difficult even to list.
However, there is one property that is characteristic of the soliton equations and although
it is interpreted in different ways in different theories it plays a crucial role in all of the
approaches—the soliton equations can be written as the compatibility condition between
two linear operatord. and M:

[L, M] = 0. 1)

(This representation is called Lax representation and the cduplé-Lax pair.) Usually
the operatord. and M have the form

0 d
= — — A = — — A 2
e U(x,t,)) Py V(x,t,2) 2

where U, V are some matrix-valued functions, depending on the tingnd the spatial
variablex through a set of ‘potential’ or ‘field’ functions

(falx, 1), folx,0), ..., fux, ) = f
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and on the spectral parameterThe soliton equation (or system of equations) corresponding
to the pairL, M is written in terms of the potential functions and has the form

(fi)e = Fi(fs fe, .. i=12,...,n

The question about the criteria for the existence of a Lax pair for a given evolution equation
(or a system of equations) and the construction of such pairs is very interesting and important.
There are some results in this direction, but the problem is far from its final solution.
Meanwhile, examples of quite different Lax pairs (not differing only on the representation
of the finite-dimensional algebras to which the coefficidiits, ¢, 1), V (x, ¢, 1) belong) for

the same equation are found. For example, in a recent work [1] we introduced new Lax
pairs, polynomial in the spectral parameter, for two important physical systems—the system
of O(3) chiral fields (CF) equations and the famous Landau—Lifshitz (LL) equation [18]. The
pairs that were known before depend on the spectral paraméteough elliptic functions

[3, 4, 33]. Thus, there arises a number of interesting questions about the equivalence of
the Lax pairs or in other words whether using different Lax pairs one can obtain the same
results. It seems that the problem can be divided into two other problems.

e The equivalence of the hierarchies of evolution equations, the hierarchies of their
conservation laws, and the geometrical properties of the corresponding hierarchies.

e The equivalence of the methods for constructing the exact solutions.

In the most trivial case, when the different Lax pairs correspond to different faithful
representations of the same algebra, the first of these problems is trivially answered.
However, even in this case the second problem is not so simple, as it can be shown that the
spectral properties of the corresponding operators actdaiyendupon the representation
one works in, see for example [15]. However, in our opinion far more interesting is the
case where the Lax pairs differ not only by the choice of the corresponding representations
but when the dependence on the spectral parameter in the Lax pairs is different. Of course,
in order to answer the questions about the equivalence one must investigate thoroughly the
results obtained via different Lax pairs. The elliptic pairs for the LL equation and {Bg O
CF equation have attracted general attention and the literature treating the corresponding
equations is large enough. Using the elliptic pair it was shown that the LL equation
and the system of @) CF equations are completely integrable Hamiltonian systems, see
[33, 27], and the hierarchies of equations related to the LL and CF equations as well as
their Hamiltonian structures are investigated in [7, 8, 10, 32].

There is one additional trend which was initially one of our principal motivations for
the search of polynomial Lax pairs for the LL and CF equations. It is well known that
when some parameters tend to zero the LL equation transforms into the famous Heisenberg
ferromagnet (HF) equation. The auxiliary linear problem for the HF equation is polynomial
in A and one of the well known facts from the theory of the soliton equations is the gauge
equivalence between this problem and the Zakharov—Shabat linear problem. From here
follows the equivalence between HF and the nonlinear @tihger equation [37]. This fact
gave rise to the gauge-covariant theory of the generating (recursion) operators [13—-15] and
it is possible that the new pairs will help us to perform a similar program in the case of LL
and CF equations.

As already mentioned, the polynomial pairs for the LL and CF equations have recently
been introduced and the theory for them is not so well developed as for the elliptic
pairs. In [2] we began the investigation of the LL and CF hierarchies of soliton equations
corresponding to the polynomial bundle and have obtained an algorithmic procedure through
which one can calculate these hierarchies. In this work we shall investigate more closely
the Hamiltonian properties of the CF hierarchy and the corresponding recursion operators
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which in the geometric approaches are called Nijenhuis tensors.

2. The CF hierarchy of integrable equations

We must recall some facts about the hierarchies of soliton equations, which can be obtained
via thesi(4) polynomial bundle, see [2]. In order to do so let us define the following maps
from C2 into the algebrao(4) (the algebra of skew-symmetric>44 matrices):

0 U Uus us
_ —Uui 0 us —Us
u — {u}l - —Us —us 0 uq (3)
—u3z up, —-u; O
0 V1 V2 —U3
_ —V1 0 U3 V2
v— {v} = —vy —v3 0 —uy (4)
vz —vp vy O
It can be seen that every elemente so(4) can be written in the form
A ={u}; + {v}, )

and this representation corresponds to the well known splitting @) into direct sum of
two so(3) algebras.

Thesi(4) bundle we are speaking about consists of the following hierarchy of Lax pairs:

_ 9 U My = 9 v, Ul =32a00+J) (6)
= ox A R T2
V) =3By + AN IBy 4+ By) (A + J) N=012,... (7)
where
A = {u}; +{v}n
(8)
Bn = {bn}l + {cn}ll
J is the diagonal matrix
—ji—J2+J3 0 0 0
0 —jitJj2—J3 0 0
J = . ) . 9
0 0 A= J2—J3 0 ©)
0 0 0 it je+ 3
andu(x, 1), v(x, t) € R3 are smooth vector fields taking values on the unit sphere:
(w?=1 ()2 =1. (10)
The vector fieldsu(x, t), v(x, ) obey the following boundary conditions
lim wu = ug = constant
x—+o00
lim v = vg = constant
x— =300
li 2y =0
e \ax ) ¥T (11)

. a\"
lim <—) v=0
x—%o0o \ Ox

n=12,...
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which mean that they converge fast enough to some limit value$xfor> oco. Let us
denote the set of the matrices of the type (8) wiftx), v(x) obeying (10), (11) byM. In
other wordsM is the set of potentials.

In [2] we proved that the nonlinear evolution equations, corresponding to the hierarchy
of Lax pairs introduced above have the following matrix form:

Ai = (By)x — 3(AJBy — ByJ A) (12)
and can be written in an equivalent ‘vector’ form

u, =—u x by
V= —V X Cy41 (13)
N=012...

where the function®,,, ¢,,n =0, 1, ... are the solutions of the infinite system:
uxbyg=0 vxcg=0
U X b1 =—(by)y — K xc,)+ux K(c,) —b, x K(v)
U X €1 = —(Cn)x — K(u x by) + K(u) x ¢, — K(by) x v
n=01...,N -1

We call this system the CF chain system. In the above expresSisnthe diagonal matrix
K = diag(j1, j2. ja)

and(K (a)); = j;a;. The next proposition gives an algorithm for obtaining successively the
functionsb,, c,,n =0,1, ....

(14)

Proposition 2.1.The CF chain system has the following solution:

bp=cu co = uv

by 1 =u x (b + (u, by)u x uy +[K(c,)]" — (u, by) — (v, e, )[K (V)]"
+u x K(w x ¢, ")+ (u, K(v))b,

15
¢, =vx (¢,")x + (v, ei)v x vy + [K(B)]" + ((u, b,) — (v, &;))[K (u)]" (15)
+v x K(u x b)) + (uK(v))e,’
n=2012...
wheree, u are arbitrary constants and
(u, by) = (b, uy) + (u x K(v), b)) + (v x K(u), ¢,’)) dx
+o0
x (16)
(v,¢0) = (e, vy) + (u x K(v), b)) + (v x K(u), c,")) dx.
+00
In the above formulae we denote ky) the usualR® scalar product:
(@, b) = aiby + axby + asbs (17)

and by the upper indices” and ‘v’ are denoted the projections of the corresponding vector
fields onto the planes orthogonal to the vector fieldand v respectively. (Of course, as
u andv depend ornx these planes also depend .on

Let us remark that the above expressions entail the existence of the integro-differential
operatorsA., such that

b\, (b
() = A ( ) ‘ (18)
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The expressions for these operators are as follows

AL <a) _ <u x (@), +u X uy f;oo((a, uy) + (u x K(v), a) + (v x K(u), b))dx)
b v x (b)y +v x v [{ ((byvy) + (ux K(v),a) + (v x K(u), b)) dx
n < [K®)]" - [K(v)]" fiﬂoo((a, uy) — (b, vy)) dx )
[K(@)]" + [K@W)]" [}, (@, u) — (b, vy))dx
<u x K(v x b) + (u, K(’u))a)
v X K(u x a) + (u, K(v))b

where a, b are two vector fields, such that, u) = (b, v) = 0. We shall see that the
operators (18) called recursion operators play a crucial role in the geometrical approach to
the theory of the nonlinear evolution equations contained in the CF hierarchy.

3. Two-parametric family of Lie brackets over so(4) and related structures

We intend to show that the Hamiltonian properties of the CF hierarchy of equations are
due to the special geometric structures existing over the manifold of potentials. For this we
need some preliminaries which we introduce in the next section.

3.1. Two-parametric family of Lie brackets ower(n)

Let so(n) (n > 2) be the Lie algebra of skew-symmetrick n matrices (the considerations
below are the same for botk andC so we do not fix the field of numbers). Létbe fixed
symmetric matrixJ € sl(n). We can then define the following bilinear skew-symmetric
map

C :so(n) x so(n) — so(n)

(19)
C(X,Y)=XJY -YJX.
Clearly, if we fix the first argument i€ (X, Y) we obtain a linear map:
Cx :so(n) = so(n) (20)

Cx(Y)=C(X,7Y).

Of course the maX — Cy is also linear and mapso(n) into Hom(so(n), so(n)). One
can check by a simple computation that the following proposition holds.

Proposition 3.1.For arbitraryX, Y € so(n)
[Cx, Cy] = CC(X,Y)- (21)

Corollary 3.1. The vector spaceo(n) can be endowed not only with the usual Lie algebra
structure defined by the commutator but with an additional Lie algebra structure defined by
C(X,Y).

Proof. Indeed,C (X, Y) is bilinear and skew-symmetric and the Jacobi identity is equivalent
to (21). O

The mapC (X, Y) possesses other interesting properties, which we introduce below.

Proposition 3.2.C (X, Y) is two-coboundary for the adjoint representatiorsofn).
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Proof. Let us consider the linear mayp
o so(n) — so(n)
a(X)=3(JX+XJ)

where X € so(n) and J is the same diagonal matrix that we used in the definition of
C(X,Y). Then it is readily seen thatedX,Y) = C(X,Y). As & = 0, for arbitrary
X,Y,Z € so(n) we have @ (X, Y, Z) =0. O

(22)

From the above proposition one readily obtains the following.
Corollary 3.2. For arbitraryX, Y € so(n)
[ady, Cy] + [Cx, ady] — Cx,y) — ate(x,y) = 0. (23)

We would like to also note the following property of the mapn the case when our
algebra isso(4) and the elemenf is the same as in (9).

Proposition 3.3.The mapa corresponding ta/, defined in (9), interchanges the two(3)
subalgebras ofo(4). More precisely:

a({u};) = —{Ku}y a({ul) = —{Ku}, (24)
where K = diag(j1, j2, ja)-
The following theorem can be proved by a simple computation.

Theorem 3.1Let C(X, Y) be a map for which (23) holds. Then for arbitrary numhers
the bilinear map

HY :GxG—>G
H@Y(X Y)=a[X, Y]+ bC(X,Y)
defines a Lie algebra structure over(n).

Remark 3.1When C(X, Y) is defined byJ, as in (19), the proof of the above statement
can be simplified as the bilinear ma@p(X, Y) is constructed in the same way as the map
C(X,Y), but using instead of the matrixaJ + bl,.

(25)

If so(n) is endowed with the structure defined by the new commutaté?’ (X, Y) related
to the fixed symmetric matriy we shall denote it byo(n) . We shall denote b }{"b)

the linear map that corresponds B“? (X, Y) when we fix the first argument.

3.2. Invariant bilinear forms foso(4),

We shall now concentrate on the algebeg4). The algebrao(4) is semisimple but not a
simple one, £0(4) = so(3) ® so(3), see (5)). For a given Lie algebfalet us introduce
the Killing form B(X, Y):

B(X,Y) =tr(ady o ady) X, Y eg. (26)

B(X,Y) is symmetric and as it is well known it is invariant with respect to the adjoint
action, that is:

B(ady(Y), Z) + B(Y,ady(Z)) =0 X,Y,ZeG. 27)

An algebrag (overR or C) is semisimple if the Killing formB(X, Y) is nondegenerate. If
the algebraj is simple every invariant symmetric bilinear form is proportionalBoX, Y)
[16]. On the other hand, i is a matrix algebra with respect to the usual commutator, then
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the form t(XY) is symmetric and invariant. It follows that if the trace form is nondegenerate
and the algebra is simple then the foBX, Y) is proportional to tXY). It turns out that

in the caseG = so(4) the Killing form B(X,Y) is again proportional to ¢XY) despite

the fact thatso(4) is semisimple but not a simple one and we shall use this fact in the
calculations as the trace form is simpler. For our considerations it is also important that
wheng is semisimple but not simple there are other invariant bilinear forms which are not
proportional to the Killing form. FolG = so(4) we shall introduce such a form. In order

to do so let us define the linear mdp: so(4) — so(4)

T (X)i; = %Eijkstx i,j,k,s=1234 (28)

In the above expression;, is the alternating Levi—Civita symbol, that ésj, is equal to

zero if at least two of its indices coincide and(if j, k, s) is a permutation of1, 2, 3, 4)
thene; ;x, is equal to the parity of the permutatién j, k, s). We also note that in (28) the

usual rule about the summation over repeated indices is assumed. The next proposition can
be proved by direct calculation.

Proposition 3.4.Let «(X) be the mam(X) = %(JX + X J) with J defined in (9) andr
be the map defined in (28). Then:
(1) T is involutive:

T?% = idyy(a).
(2) T is symmetric with respect to the Killing form:
B(T(X),Y) = B(T(Y), X) X, Y € so(d).

@ TX), TM]=I[X,Y] X,Y € s0(4).
(4) The twoso(3) subalgebras ofo(4) are invariant under the action @f;

T ({u};) = {u};
T({u};) = —{u}.

(5) The formB([X, Y], T (Z)) is three-cocycle for the trivial representationsef(4).

(6) The form B(XJY — YJX,T(Z)) = B(C(X,Y),T(Z)) is three-cocycle for the
trivial representation ofo(4).

(7) The linear mapping is symmetric with respect to the Killing form:

B(a(X),Y) = B(X,a(Y)) X, Y € so(4).
8)Tow=—aoT.
Let us define the bilinear form
K(X,Y) = B(X,T(Y)) X, Y € so(4). (29)
Taking into account the properties &fit is not hard to prove the following.

Proposition 3.5.K (X, Y) is invariant bilinear form with respect to the adjoint action of
50(4)(a,b)-

From the properties of anda listed in proposition 3.4 we get the following.

Proposition 3.6.The linear mappingr is skew-symmetric with respect to the forkh, that
is

KaX),Y)+ KX,ax(Y))=0 X, Y € so4). (30)
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3.3. Two-parametric family of Poisson—Lie tensors cug#)

As is well known (see for example [25]) the Poisson brackets over a mahifelccan be
introduced either by symplectic form or by Poisson tensor. Let us recall some principal
results from the theory of Poisson manifolds, that is the manifolds equipped with Poisson
tensor.

Let 7,,(M) and T,:(M) be the tangent and the cotangent spaces at the pooftthe
manifold M.

The Poisson tensor field (or simply Poisson tensor) is a field of linear mappings
m — P, : T*(M) — T,(M) having the properties:

(i) P, =—P, (i) [P, P]ls = 0.

Here [.]s denotes the so-called Schouten bracket of two tensor fields (see [9]).

The Poisson tensors were discovered by Lie [20] and have many applications, see for
example [19, 25]. Condition (i) ensures the Jacobi identity and (i) guarantees the skew-
symmetry of the Poisson bracket

{f, g} = (Pdf,dg)
where f and g are functions over the manifold.

Remark 3.2When we writeP* = — P we assume that the spacgs'(M) andT,,(M) can
be identified. This of course is always possible if the manifsitlis finite dimensional,
but if it is not the case one must proceed with some caution.

The Poisson bracket could be degenerate, that idoes not necessarily possess an
inverse. WhenP is invertible one can define the symplectic fownthrough the formula
w(X,Y) = (X, P~X(Y)), whereX, Y are vector fields oveM. Naturally, in this case the
Poisson brackets defined through the Poisson structure and through symplectic stoucture
coincide.

There is a canonical way to equip the dual spé@é¢eof a Lie algebrag with Poisson
structure, provided one can identify the vector spag&sand G. This structure is again
discovered by Lie, [20] and was rediscovered later by several authors, see for example
[17, 34].

Supposeu € G*. Then clearly

T.GH=G"  THG")=G"=G. (31)
The canonical Poisson structure o¥gr is defined by the following field of linear maps:

w— L, € Hom(G, G*)

L,(§)=—-adu Eeg.

The tensotL is called Poisson—Lie tensor or Kirillov tensor and the Poisson bracket defined

by it is called Poisson—Lie bracket, Kirillov bracket, Berezin bracket etc. We shall call the

above tensor the Poisson—Lie tensor and the corresponding bracket the Poisson—Lie bracket.
If there exists symmetric nondegenerate bilin8&x, Y) over G,invariant with respect

to the adjoint action ofj, then one can not only identify in canonical wgy and G but

define Poisson brackets ¢n Indeed, ifG* andgG are identified the adjoint and the coadjoint

representations coincide and one can define Poisson structure over the glgebra

qg — L, e Hom(G, G)
L, =adg seG=G"

1 In what follows we assume that all the manifolds and all the tensor fields are smooth.

(32)

(33)
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If f, g are smooth functions ovej the Poisson brackdtf, g} of these functions is then

{f.8}(q) = —(q.[df,.dg,]) = —B(q,[df,, dg,]) (34)

where the differentials f,, dg, € G* = G.
Considering the algebraical structure ove(4) , ) and taking into account the existence
of the invariant bilinear formK (X, Y) we arrive at the following theorem.

Theorem 3.2For fixed element/ there exists a two-parametric family of Poisson-Lie
structures over the manifold! = so(4):

g — P“? € Hom(so(4), so(4))

35
PEPE) = H " (q) = —H"P(§)  § € s0(4) = s0(4)". .

3.4. The Gel'fand—Fuchs cocycle and related Poisson structures

There is an elegant way to define the Poisson tensor over the infinite-dimensional manifold
Golx] of all smooth functionsf (x) defined on the real line, taking their values in the Lie
algebrag and tending fast enough to constgigte G when|x| — oo. For obvious reasons

we take the tangent spa&g(Go[x]) at the pointf e Go[x] to be the vector space consisting

of all Schwartz-type functiong(x) on the line taking their values ig. We shall denote

this space byg[x]. If we define the Lie algebra operation pointwise b&#ix] and G[x]
become Lie algebras and

[GLx]. Golx]] C Glx]. (36)

First, we recall that ifG is a Lie algebra angt is a two-cocycle of the trivial action of the
algebra on the field of scalars, then

w—> PPy =—-adpu+yE,.) EeH (37)

is Poisson tensor ovef*.

The above trick is widely applied in the theory of the integrable equations in the case
‘H = G[x], the algebra of Schwartz-type functions Brtaking values ing, see for example
[28-31, 25]. IfK(X, Y) is invariant nondegenerate bilinear form grthen we can define
the following two-cocycle oiG[x], called the Gel'fand—-Fuchs cocycle:

+00 8
yE,n) = c/ K(0:&, n(x)) dx &,n € H[x] ¢ = constant 0, = T

o0

(38)

Allowing some lack of rigor we identifiG[x] and G[x]* using the invariant nhondegenerate
bilinear form ong[x]:

+00
(&, m) =/ K (§(x), n(x)) dx §,n € glx] (39)

[ee]

and as a result we obtain the following Poisson tensor

Py(§) = [§.q] + co.&. (40)

It can be verified that the above expression actually defines the Poisson tensor also for the
case when the potentialbelongs to the set of all smooth functions with value§ itending

fast enough to constant element frghmas |x| — oo, that is toGg[x]. Applying the above
constructions for the case = so(4)(,.» We obtain the following theorem.
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Theorem 3.30ver the manifoldso(4)o[x] there exists a three-parametric family of Poisson
tensor fields:

Pq(a,b,c) — _Hq(!l,h) + cd,. (41)

The situation stated in the above theorem is quite similar to that described in [31] but the
existence of scalar product invariant with respect to the both Lie algebra structures makes
the so(4) case quite unique.

4. Geometric setting for the CF hierarchy

4.1. Poisson—Nijenhuis structures.

In order to develop the geometric theory for the CF hierarchy we recall some properties
of the so-called Poisson—Nijenhui®{N) manifolds. It is known that they give geometric
interpretations for some of the remarkable properties of the soliton equations.

Let M be a manifold. A Nijenhuis tensor fiel®d over M (or simply a Nijenhuis
tensor) is a field of continuous linear mappings:

m — N, : T,,(M) = T,,(M) me M (42)

(field of operators) for which the Nijenhuis brackRt= [N, N] vanishes, see [9]. Roughly

speaking the fact thatN, N] = 0 ensures that the eigenspacesNofare integrable in

Frobenius sense. (For some additional properties of the Nijenhuis tensors see [35, 36].)
Following [23] we shall say that on the manifolt!f is defined aP—N structure if on

M are defined simultaneously Poisson tenBoand Nijenhuis tensoN which satisfy the

following coupling conditions:

NP = PN* (43)
PLyxy(@) — PLx(N*a) + Lpo(N)(X) =0 (43%)

for an arbitrary choice ofX € 7(M) anda € 7*(M). (Here by7 (M) and 7*(M)

are denoted the modules of vector fields and one-forms édeand Ly means the Lie
derivative defined by the vector field.) The above structure seems very specific, but
for the soliton equations it is natural. In fact in almost every approach to the theory of
completely integrable systems one can notice that a crucial role is played by the so-called
compatible Poisson tensors, see [5, 6, 21, 22], or as they are also called Hamiltonian pairs,
see [11, 12]. Two Poisson tensaPsand Q are compatible if the tensa?P + Q is also a
Poisson tensor. It is evident that for this it is necessary and sufficient that

[P, Qls=0 (44)

where [P, Q]s is the Schouten bracket. It can be shown [23], that the compatible Poisson
tensors define th@—N structure, more specifically iP and Q are Poisson tensors on the
manifold M and Q is invertible then the tensor field§ = P o 0~ and Q endow the
manifold M with P—N structure. The properties of the—N manifolds (or compatible
Poisson tensors) explain some of the remarkable features of the soliton equations, such
as: the fact that they appear in hierarchies, the existence of series of conservation laws
for these equations and the fact that they are Hamiltonian with respect to hierarchies of
Poisson structures (symplectic structures), see [11, 12, 21, 22]. According to the geometric
schemes the soliton equations are defined by the fundamental fields of the above structures,
for example in the case aP—N manifolds the fundamental fields satisfy Lx(P) = O,
Lx(N)=0.
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Naturally, it happens that Poisson teng@ris degenerate, that i® ! do not exist
and it is impossible to perform the construction outlined in the above. However, if it is
possible to restrict the Poisson tensdtsand Q onto some submanifold” ¢ M and if
the restriction ofQ is nondegenerate thek is endowed with theP—N structure. That is
why it is important to know how to restrict Poisson tensors onto submanifolds. One of the
results treating this issue is the following theorem, [23, 24], which we shall refer to as the
restriction theorem

Theorem 4.1Let M be a Poisson manifold an” ¢ M be a submanifold. Let us denote
by i the natural inclusion aiV" into M, by x5 (N),, the subspace of covectagse 7, (M)
such that

Py (Ol) € [di]m(Tm(N)) = im([di]m) m e N (45)

and byT:- (\) the set of all covectors ove¥t vanishing on the subspate ([di],), m € N
(the annihilator ofim([di],,) in T, (M)). Let the following relations hold:

XN+ Ty (N =Ti(M)  meN (46)

Xp N N T (N) C ker(P,,) meN. (47)
Then there exists a unique Poisson tenBaon A/, i-connected withP, that is

P, = [di] o P, o [di]}, meN. (48)

The above theorem may be applied for example to restrict the Poisson-Lie tepsor
for a given algebra; onto the orbits of the coadjoint representation of the Lie grayp
corresponding t@j, see [17, 34] and for general results about restriction of Poisson tensors
see [26].

4.2. P—N structure of the manifold of potentials for the CF hierarchy

We shall define now the Hamiltonian structures of the equations from the CF hierarchy.
First, let us remark that the set of potentials has a natural structure of infinite-dimensional
manifold. Indeed, the manifold of potentials for the CF hierarchy is in fact the set of smooth
functions

A(x) ={u)} +{v)}y
(u()? = (v)* =1 (49)
u(x), v(x) —real
defined over the real lin® and tending fast enough to some limit value
Ao = {uo}; + {vo}is

as|x| — oo.
Diagonalizing the matri¥A (x) we see that the requirements (49) simply mean #ab
takes its values into the following orbit of the adjoint representation of the gfau@, R):

Op, = {A = Ad(g)Bo g€ SO@,R)} C so(4 (50)
where
0 20
-2 0 0O
Bo=|o o o o] =1@0.0}+(L00). (51)
0O 0 0 O
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Therefore the manifold of potentials is the §&4,[x] consisting of functions taking values in
Op, and tending fast enough to some limit valugas— oco. Clearly O [x] is an infinite-
dimensional manifold and submanifold @f(4, R)o[x]. This submanifold can be expressed
more explicitly if one remarks that the orliitz, has also the following representation:

Op, ={A:B(A,A) =16 K(A, A) =0} C so(4,R) (52)
whereB(X, Y) andK (X, Y) are the symmetric forms amw(4, R) that we introduced earlier.
In order to see that it is enough to remark that for arbiti@ry € R3

B(a;,b;) = K(a;, b)) = —8(a, b)

B(as;,by;) = —K(aj, byy) = —8(a, b) (53)

B(a;, b;;) = K(a;, b)) =0.

Naturally X (x) € T4(Og,[x]) exactly when
B(A,X)=0 K(A,X)=B(A, T(X)) = B(T(A), X) =0. (54)

For the sake of brevity we shall denote the poitks= {a}; + {b};; of the algebraso(4)
by Q0 = (a,b)” and the pointsA(x) = {u(x)}; + {v(x)};; of the manifold Op[x] by
A(x) = (ux),v(x))T or simply by A = (u,v)”. Also, in order to write in a more
convenient way some complicated expressions we shall denote by lower iddires! 7
the following projections

() (9,

With the new notations a vectdf (x) at the pointA(x) € Og,[x] is represented by a couple
of Schwartz-type functiongé(x), n(x))”, for which:

(u(x), £(x)) = (v(x), n(x)) = 0. (56)

According to our convention we identify the vectors and covectors using the pairing
defined in (39). We easily obtain

+00
(€@, NN, (), v))") = —8/ [(§(x), p(x)) — (n(x), v(x))] dx. (57)

Thus K (X, Y) is nondegenerate when restricted to the tangent spat@;,[x]) and as
before with the help ofK (X, Y) we can identify the tangent spadg (Og,[x]) and the
cotangent spaceé; (Op,[x]).

We shall now try to restrict two of the tensors from the three-parametric family of
Poisson tensors defined in theorem 3.3 onto the submardlg|fik]. These tensors are

(-3.0
QA = _HA 2 = %adA

1
Pa=—Hy? 40, = —1Cs+0,

(58)

or equivalently

P(é)_(£X+K(vxn>—ux1<<n>+§xK(v>> (59)
n) \n+Kux§-—vxKE+nxK@)

o(5)=(=55) ©

Remark thatQ~! = — Q.
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The fact thatQ allows nondegenerate restriction ou@g,[x] and its form after the
restriction does not change is in fact the theorem that the Poisson—Lie tensor restricted to
an orbit of the coadjoint representation is nondegenerate, so there is no need to prove it.

In view of the tensofP it cannot be restricted directly. In order to perform the restriction
we shall use theorem 4.1 with = so(4, R)o[x] and N = Op,[x]. Let us find x}(N)a
and T (N), A € N = Og[x] (for the definitions of these spaces see the restriction
theorem 4.1). Naturally, the annihilator

TA\V) = {(fu,gv)"; f.g €S} (61)
wheresS is the set of all Schwartz-type functions on the line. We can also say that
Ty (N) ={(fA+ET(A); f,g€S) (62)

According to the definitionX € x;(N)a if Pa(X) € T4(Opy[x]) or in other words if the
following equations hold

B(A,3;X) — 3B(A,Ca(X)) =0 (63)
K(A,d,X) =0. (64)
After some simple transformations we obtain that these equations are equivalent to
B(A, X) = 8, '[B(A, X) + 3B(A, C4(X))] (65)
K(A,X)=B(T(A),X) = 8_;1B(A,C, T (X)) (66)

where 3! stands for the inverse of the operatar The choice ofd_! of course is not
unique and it is easy to see that we can use as inverse any of the operators:

a;lzr/ +(1—1) TelR (67)
—00 “+o00
but we shall postpone the discussion about the appropriate choiggfar order to proceed
with our geometric construction.

Let us remark that fold € Op[x] we haveB(A, T(A)) = K(A, A) = 0 or in other
wordsA andT (A) are orthogonal with respect to the Killing form. Then taking into account
(54) we see that the following orthogonal decomposition holds:

so(4,R) = [RA(x) & RT(A(x))] & Ta(Op,[x]). (68)

(This decomposition obviously depends on

For fixed X let us denote byX“ the orthogonal projection off onto the space
T4(Op[x]) and the orthogonal projection of X over the space spanned and 7 (A)
by X4. It is easily seen that

X =X+ £B(A, X)A+ £B(T(A), X)T (A)

1 1 (69)
Xy =—%B(A, X)A — XB(T(A), X)T(A).
If we now return to equations (65) and (66) then due to the fact that
B(A, Ca(T(A))) = K(T(A), Ca(T(A))) =0 (70)

we see that in the right-hand sides we can put instead difie projectionX4 and (65),
(66) actually show that if{ € x;(N)4 the componenk , is expressed by the component
X4, Taking this into account we write

X=Y+7Z (71)
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where
Y = X" — ZA7B(A:, X*) + FB(A, CAa(X*)] — £T(A)d; ' B(Ay, T(X™) (72)
Z = Xa+ 1548, [B(Ar, X)) + 3B(A, Ca(X D] + T (A) 3, B(A,, T(X™).  (73)

Using (70) one can check that € x:(NV)4. In view of the vectorZ it is a linear
combination ofA and 7'(A) and henceZ € T;-(N). Moreover, from (71) and (65), (66)
we see that

TiN) @ xpN)a = Ti(M) (74)

TN () x3WN)a = {0} C ker(Py). (75)
(Of course, hereM = so(4,R)o[x] and N = Op[x].) Then the requirements of
the restriction theorem are fulfilled and there exists restrictiorof P defined overV.
According to the prescriptions of this theorem tor T (N) we must take = i*«, then
represenfd as sump; + B2 in such a way thap, € X5(N)4 and Bz € TH(N) and finally
put P(x) = P(B1). Here as usual is the natural inclusion map

i N —> M. (76)

However, in our casd4 (M) and T (M) are identified and the pull-back of the inclusion
mapi is simply the orthogonal projectiok — X#. As it is readily seen the role of the
componeniB; here is played by expression (72) where we must¥pinstead ofx* in the
integrands. Finally, we arrive to the following expression for the restricted Poisson tensor:

PA(X) =3, X — A9 [B(A:, X) + 3B(A, C4(X))]
—3:T (A0 " B(A,, T(X)) — 15 A[B(Ax, X) + 3B(A, Ca(X))]
—3%T(A)B(A,, T(X)) — 3C4(X)

X € Ti(N) ~ T4(N).

Remark 4.1 The function A, tends to zero a$x| — oo and X (x) is a function of the
Schwartz type, so the integrals in (77) exist. The same is true for the integrals in the
expressions fol’ and Z, see (72) and (73).

(77)

We must also ensure th&t is skew-symmetric at least in a weak sense, that is we must
have

((Pa(X), Y)) = =((X, Pa(Y))) (78)
for X,Y € Ta(Op,[x]). A simple integration by parts shows that for this we must take

coi([ )

The construction of Nijenhuis tensay is now an easy task. We must calculate
N=PQ'=—PQorN*= Q1P =—QP. We obtain:

Ni(X) = —3[A, 0. X] + 35[A, A9, [B(Ay, X) + 3B(A, CA(X))]
+35[A. T(A)]0; " B(Ay, T(X))
+3[A, T(A]B(A,, T(X)) + 3[A, Ca(X)]

X € T{(N) ~ Ta(N).

Now let us formulate our main result.

(80)

Theorem 4.2The fields of operatorss — Q4 and A — P, endow the manifold of
potentials\' = Op,[x] for the CF hierarchy withP—N structure.
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We shall now apply now this result to the CF hierarchy, but first we must write the
operators which we have obtained in termswofv. If we put X = (¢, )T and assume
(u, &) = (v,m) =0 we get:

[PA (g)] =[0.+K(wxn)+uxK(@® +E£&xKw)"
1
+u x K (v) 3; [(uy, &) — (v, )]
+u, 07 (uy, &) + (u x K(), €) — (K(u) x v,1)] (81)
[PA (5)] =[an+Kux&+vxKE+nx K]
11

+v x K(u) 37 [(vy, M) — (uy, €)]
v, a7 (v, M) + (v x K(u), n) — (K(v) x u, §)] (82)

where as before by upper indicesv we denote the projections over the planes orthogonal
to the vectorsu and v respectively andk = diag(ji1, j2, j3). For the tensor fieldv* we
obtain:

N; (5) = u x & +ux K xn) — [Km)]" + (K (), u)

n;l
—[K )] 8; [(ux, €) — (v, )]

Fu x u d (g, €) 4 (u x K (), &) — (K (u) x v, 1)] (83)
Nz(f,) =vx0n+vxK(ux§€ —[KE] +nK(u),v)
L dnr

—[K @)]"9; (ve, m) — (us. €)]

+v x v, 37 (v, M) + (v x K(u),n) — (K@) x u, £)]. (84)

The comparison shows that the recursion operators from (18) are relatdd to the
following way:

N*= 1A, +AD). (85)

For the equations from the CF hierarchy one can equivalenthAusandA _ (the integrands

in this formulae are always total derivatives) and therefore it is evident that one can also
use N*. Remember now that the equations from the CF hierarchy have the form (cf (12)
and (13)),

A = (Bn)x - %(AJBn - BnJA) = %[A, Bn+l] = QA(Bt1+l) (86)
and
By = N*(Bn) nz1l
Bn = {bn}l + {Cn}II-
If we considerB,, as one-forms all of these equations are Hamiltonian. The single
thing that must be proved in order to apply the general results aBei manifolds to
our case is to show that the forn#s and B, are closed. However, the evolution equation
corresponding taB, is up to some changes of the parameters tti8) @F system. It is

well known that it has a Hamiltonian function, see [33] and therefyés closed. In view
of the form By it is proportional to

(87)

eflu x uly + pufv x vl (88)
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€, u being constants. One readily sees that it is enough to show that on the maviifoid
the smooth vector functions(x) taking values on the unit sphere and tending sufficiently
fast to some valuey as|x| — oo the covector fieldy — y,:

+00
Yo(€) = / (0 x v, E]dx €[] € T,(A) (89)

o0

is closed. If¢ andn are two vector fields oV then the calculation shows that

[dy]. (€. ) =/

—00

“+o00

+00
(v, €[u] x nlv]) dx — 3 / (0. €[] x v} db.

For the vector field€ andn im0 &[v(x)] = limy—on[v(x)] = 0 and the first term

in the right-hand side is zero. In view of the second term it is zero simply because
v (x), E[v(x)], n[v(x)] are orthogonal tov(x) and hencev,, £[v] x n[v]) = 0. As a
consequence from the above considerations and from the properties of the fundamental
fields of the P-~N manifolds, see [21, 22], we get the following.

Theorem 4.3The right hand sides of the equations from the CF hierarchy are fundamental
fields for theP—N structure generated by the fief2 1 B;. These equations are Hamiltonian
with respect to the infinite hierarchy of Poisson structures and the flows corresponding to
these fields commute.

5. Discussion

As we have stated, the main question that we are trying to answer is whether using essentially
different Lax pairs we obtain the same results for the corresponding nonlinear evolution
equations. The answer for the case of the CF hierarchy of equations and more precisely
for their Hamiltonian structures and conservation laws is affirmative. We have obtained the
same Poisson tensofsand Q over the manifold of potentials as have been obtained using
the hierarchies of Poisson structures over elliptic algebras, see [32]. Hence, we have the
same hierarchy of equations and the same conservation laws for it. However, there are still
many questions arising. The results we are citing are obtained using a slightly different
technique and in order to present them we must introduce the so-called elliptic algebras. The
elliptic algebrag, used for describing the CF hierarchy of equations and their Hamiltonian
structures is defined by the generators

X2 = w? w, X,
X§l+2 = a)zza);la)la)zagXa (90)
leZ a=1223.

In the above formulag&, are the generators 6b(3) ~ su(2) with commutation relations
[Xo» Xo] = €upy Xy

and €44, is the three-dimensional Levi—Civita symbol. As a rule, in the literature the
generatorsX,, are expressed through the Pauli matrices. The quandities,, « = 1,2, 3
satisfy the quadratic relations

Wl —wh =rg—r14 @ — ) =dy =ry— 5(r1+r2+713) (91)
wherer, = —j2. Usually the following natural parametrization fer, w, is used:

wy =+ PQA) —d, w=+PQ) (92)
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where P(1) is the Weirstrass function(P’)? = 4(P — dy)(P — do2)(P — d3). We prefer

the expressions through the Weirstrass function rather than the usual expressions with the
Jacobi elliptic functions, but of course it is all the same. One has the following commutation
relations of the generators (90) defining the so-called elliptic algebra:

[Xsl’ Xém] — 6a5y(X)2,(]+m) _ dyxi(l-i—m—l))
[Xil’ X§171+1] = €upy (X}2/(1+;11)+1 _ dyX}Z/(l+’11)71) (93)

2+1 y2m+1y _ 2(l+m+1)
[X2T X" = €upy X0,

These relations are consequences both from the commutation relationg2pfand the
properties of the elliptic functions.

The tensorsP and Q we have used in the above arise as restrictions over some
submanifold [32], of the natural Poisson—Lie tensors for the elliptic algébrand its
central extension with the help of the Gel'fand—Fuchs cocycle.

Comparing the two approaches we note that all the results we have obtained in this
paper can also be formulated in terms of graded algebras. For example, in our approach
we actually use the graded algel§ia generated by the elements

Ny = —32"{ea}1 0+ )
Ml = —3"ea} 11 (A + J) (94)
nez a=123

wheree,, = 1,2, 3 is the usual orthogonal basis ®°, that is (ea)pg = Sup. The
commutation relations between this generators are

[Ng» N;jn] = Eotﬂy(N),,1+m+l + ij;er)
(M, M}'] = €upy (M4 i, NI (95)
[Nél» M;sﬂ] = _Eaﬂy(jﬁN;ler + jaM1’/1+m)-

We must stress that in writing the above relatians used implicitly the new Lie algebra
structure that we introduced over the algebra so(4) and the above relations are not simple
consequences from the usual Lie algebra structure over so(4)

Then again the tenso® and Q can be obtained by restricting the natural Poisson—Lie
tensors forG, and its central extension over some submanifold. One easily finds that the
resulting Poisson submanifolds used in both constructions are isomorphic and then the two
approaches based on the elliptic alge@raand on the algebrg, are equivalent. One can
then imagine that these algebras are isomorphic but until now we had failed to prove it.
Thus, we have the ‘experimental’ result that the two algeltaand G, generate the same
Poisson structures over some submanifolds but it is still an open question why this occurs.
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